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Abstract

In a two-phase material not only each constituent, the solid and the fluid, may be compressible on the microscopic
level but also the skeleton itself possesses a structural compressibility. If the compression modulus of a constituent is
much larger than the compression modulus of the bulk material this constituent is assumed to be materially incom-
pressible. A common example is soil. Governing equations for such materials are found in the framework of Biot’s
theory either for the unknowns solid displacement and pore pressure or for the unknowns solid displacement and fluid
displacement.

For both formulations fundamental solutions are derived using the method of Hormander. Unlike the u}—p for-
mulation, where the incompressible model can be obtained applying a limiting procedure directly to the compressible
system of equations, a complete new derivation is necessary for the uS—uf formulation. This yields a model of incom-
pressibility different from that of the uj—p formulation which seems to be not suitable for poroelastodynamic problems.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A historical review on the subject of multiphase continuum mechanics identifies two poroelastic theories
which have been developed and are used nowadays, namely Biot’s theory and the Theory of Porous Media.
For more details, the reader is directed to the work of de Boer and Ehlers (1988, 1990) or to the recently
published monograph (de Boer, 2000).

Based on the work of von Terzaghi, a theoretical description of porous materials saturated by a viscous
fluid was presented by Biot (1941). The dynamic extension was done in two papers, one for the low fre-
quency range (Biot, 1956a) and the other for the high frequency range (Biot, 1956b). Based on the work of
Fillunger, the Theory of Porous Media has been developed. This theory is based on the axioms of con-
tinuum theories of mixtures (Truesdell and Toupin, 1960; Bowen, 1976) extended by the concept of volume
fractions by Bowen (1980, 1982) and others (Ehlers, 1993a,b). Remarks on the equivalence of both theories
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are found in the work of Bowen (1982), Ehlers and Kubik (1994) and Schanz and Diebels (2003). In all
these publications, linear version of both theories are compared and, finally, the equivalence can only be
shown if Biot’s apparent mass density is set to zero. More important for the paper at hand, in Schanz and
Diebels (2003) it is shown that the differential operator for both theories is equivalent. Therefore, in the
following, it is sufficient to discuss the fundamental solutions only for one of both theories. The result is
simply transformed to the other theory by changing some material constants. As Biot’s theory is more
common this theory is used here.

Wave propagation phenomena are often observed in semi-infinite media, e.g., earthquake motion or
propagation of machine foundation excitations in the soil and their effect on neighboring buildings. The
efficiency of the Boundary Element Method (BEM) in dealing with such semi-infinite domain problems,
e.g., soil-structure interaction, have long been recognized by researchers and engineers. However, a
mandatory requirement for every boundary element formulation is the knowledge of fundamental solu-
tions. These solutions solve the underlying differential equation with the inhomogeneity of a Dirac dis-
tribution. Physically spoken, the response of a system due to a unit impulse is looked for. These solutions
exist for a lot of linear problems.

A poroelastic modeled continuum is described by a set of coupled differential equations where two
possible choices of unknowns are used. Either, the solid displacement and fluid displacement are chosen
which will, in the following, be denoted u}—u! formulation or the solid displacement and the pore pressure
are chosen which will be denoted u;—p formulation. As in any time dependent problem the governing
equations may be formulated in frequency or Laplace domain or directly in time domain. The latter is the
more complicated case because then a hyperbolic system has to be solved contrary to the elliptic system in
the transformed domain.

In case of consolidation processes, a quasi-static theory is sufficient. For this special case, a survey of
fundamental solutions is given in Cheng and Detournay (1998). But, for treating wave propagation
problems a full dynamic model is required. In this case, first approaches to develop fundamental solutions
was made by Burridge and Vargas (1979) for the u$—uf formulation. As inhomogeneity they chose only a
point force in the solid which is not sufficient for the usage of such a fundamental solution in a BE for-
mulation. Later, Norris (1985) derived time harmonic fundamental solutions for the same formulation
using a point force in the solid as well as a point force in the fluid as load. He also obtained explicit
asymptotic approximations for far-field displacements, as well as those for low and high frequency re-
sponses. For the same set of unknowns but in Laplace domain Manolis and Beskos (1989) published
fundamental solutions (see also the corrections in Manolis and Beskos (1990)). Additionally to the deri-
vation of these solutions they pointed out the analogy between poroelasticity and thermoelasticity. How-
ever, this analogy is only possible for the u{—p formulation. This was also shown by Bonnet (1987) when he
presented the fundamental solution for the uj—p formulation in frequency domain. Additionally, to the
three-dimensional (3-d) solutions which he converted from the thermoelastic solutions from Kupradze
(1965) he has given the two-dimensional (2-d) solutions. Further, he concluded that the u{—p formulation is
sufficient and the u$—u formulation is overdetermined. In the following, here, this statement is confirmed. It
should be mentioned, however, that in Bonnet’s paper (Bonnet, 1987) there is some confusing regarding the
sign of the time variation assumed for the harmonic variables which in the poroelastic equations is different
to that of the thermoelastic ones. This is corrected by Dominguez (1991, 1992). Boutin et al. (1987) pub-
lished fundamental solutions for Biot’s theory but they neglect the inertia terms of the fluid. The respective
governing equations are motivated by a homogenization process (Auriault et al., 1985).

With one exception in all above cited papers fundamental solutions are given in transformed domains. A
time domain fundamental solution was presented by Norris (1985) and Wiebe and Antes (1991) for the ui—
uf formulation. However, in these solutions the viscous coupling of the solid and fluid is neglected. Without
this restriction Chen presented in two papers, for a 2-d continuum (Chen, 1994a) and a 3-d continuum
(Chen, 1994b), fundamental solutions for the u;—p formulation. These solutions are achieved from the
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corrected Laplace domain solutions of Bonnet (1987) by inverse transformation resulting partly in an
integral which must be solved numerically.

The above cited fundamental solutions are mainly derived by two methods: First, there is the possibility
two split the operator by introducing three potentials or, second, to reduce the highly complicated dif-
ferential operator matrix to a simple scalar operator by the use of the method of Hormander (1963). The
latter is also used here to derive fundamental solutions for both formulations, i.e., the u—u! formulation
and the u;—p formulation.

Beside the compressibility of the constituents also a structural compressibility exists and is modeled in
Biot’s theory. For some materials, e.g., soil, the compression modulus of each constituent itself is much
larger than the compression modulus of the structure. In these cases, it is sufficient to approximate both the
fluid and solid constituents as incompressible, i.e., only the structural compressibility remains. For this case,
up to now, no fundamental solutions are available in the literature.

In the following, first, Biot’s constitutive equations are recalled and the assumptions for incompress-
ibility are given. With these the governing equations for the u{—u' formulation and the u$-—p formulation are
derived for compressible as well as the special case of incompressible constituents. Subsequently, the
fundamental solutions in Laplace domain are derived for both formulations. The fundamental solutions for
the compressible case are recalled not only for completeness also to show how the physical approximation
of incompressibility is represented in the mathematics of the formulas. As these solutions are the basis of
BE formulations also their singular behavior is discussed. Finally, a visualization of the fundamental
solutions is presented.

Throughout this paper, the summation convention is applied over repeated indices and Latin indices
receive the values 1, 2, and 1, 2, 3 in two-dimensions (2-d) and three-dimensions (3-d), respectively.
Commas (), denote spatial derivatives and dots () denote the time derivative. As usual, the Kronecker
delta is denoted by J;;.

2. Biot’s theory—governing equations

Following Biot’s approach to model the behavior of porous media, an elastic skeleton with a statistical
distribution of interconnected pores is considered (Biot, 1955). This porosity is denoted by

Vf

where V' is the volume of the interconnected pores contained in a sample of bulk volume 7. Contrary to
these pores the sealed pores will be considered as part of the solid. Full saturation is assumed leading to
V = V" 4+ V* with V* the volume of the solid, i.e., a two-phase material is given.

2.1. Constitutive assumptions

If the constitutive equations are formulated for the elastic solid and the interstitial fluid, a partial stress
formulation is obtained (Biot, 1955)

2 2
st'j = ZGng/ -+ (K — g G+ %)8/Sck5if + lefckéij, (23.)
o =—¢p= Qey + R‘gilﬂ (2b)

with ()° and ()" indicating either solid or fluid, respectively. The respective stress tensor is denoted by o;; and

o' and the corresponding strain tensor by ¢, and el,. The elastic skeleton is assumed to be isotropic and
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homogeneous where the two elastic material constants compression modulus K and shear modulus G refer
to the bulk material. The coupling between the solid and the fluid is characterized by the two parameters O
and R. In the above, the sign conventions for stress and strain follow that of elasticity, namely, tensile stress
and strain is denoted positive. Therefore, in Eq. (2b) the pore pressure, p, is the negative hydrostatic stress
in the fluid ¢'.

An alternative representation of the constitutive equations (2) are used in Biot’s earlier work (Biot,
1941). There, the total stress o;; = o}, +¢'d;; is introduced and with Biot’s effective stress coefficient
o= ¢(1 + O/R) the constitutive equation with the solid strain, &, and the pore pressure, p

. 2 .

is obtained. Additional to the total stress ¢;;, as a second constitutive equation, the variation of fluid volume
per unit reference volume ( is introduced
¢
(=g, +—p. (3b)
R
This variation of fluid { is defined by the mass balance over a reference volume, i.e., by the continuity
equation

{+ qii =a (4)

with the specific flux ¢; = d)(uﬁ—uf) and a source term a(t). Eq. (4) identify { as a kind of strain describ-
ing the motion of the fluid relative to the solid which takes a source in the fluid into account. This source
term is not motivated by any physical reason but it is later needed for the derivation of the fundamental
solutions.

In a two-phase material not only each constituent, the solid and the fluid, may be compressible on a
microscopic level but also the skeleton itself possesses a structural compressibility. If the compression
modulus of one constituent is much larger on the microscale than the compression modulus of the bulk
material this constituent is assumed to be materially incompressible. A common example for a materially
incompressible solid constituent is soil. In this case, the individual grains are much stiffer than the skeleton
itself. The respective conditions for such incompressibilities are (Detournay and Cheng, 1993)

K K
o < 1 incompressible solid, X < 1 incompressible fluid, (5)

where K*® denotes the compression modulus of the solid grains and K" the compression modulus of the fluid.
With these conditions it is obvious that three cases exists: (i) Only the solid is incompressible. (i) Only the
fluid is incompressible. (iii)) Or the combination of both.

To find the respective constitutive equations for each of these cases the material parameters o, R, and Q
have to be rewritten in a different way. Considerations of constitutive relations at micromechanical level as
given in Detournay and Cheng (1993) lead to a more rational model for this purpose:

=1, (6a)
B ¢2Kstz

Rin(KS—K)—I—(bKS(KS—Kf)’ (6b)

Q _ 4)(0( B (b)KfKS_ (6C)

K'(Ks —K) + ¢Ks (K — K
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Inserting in Egs. (6) the conditions of incompressibility (5) the three different cases are found:

o Incompressible solid K /K® < 1
a1, R~K'¢, O~K'(1-4¢). (7)

These limiting values can be inserted in the constitutive assumptions (2) or (3), respectively.
e Incompressible fluid K /K" < 1
¢’K* Pl —¢)K

0

o unchanged, R~-———, ~ T 8)
1-¢p—£ l-¢—-%& (

Also in this case, these limiting values can be inserted in the constitutive assumptions (2) or (3),

respectively.
e Both constituents are assumed to be incompressible K /K* < 1 and K /K" < 1

0 _1-9¢

, R— oo, oo, but ==—"-. 9
The relation R, O — oo expresses that the value of R, Q becomes large, however, due to physical reasons
it is in any case limited. But, the condition that R becomes large is used to neglect in (3b) the influence of
the pore pressure. This condition and o = 1 result in the incompressible constitutive assumptions

: 2 :

a1

3

(=g, (10b)
for the total stress formulation. From (10), it is obvious that this special modeling of a porous continuum
relates the variation of fluid volume directly to the volumetric solid strain and the pore pressure is added
to the solid stress linearly without the weighting factor o.

For the partial stress formulations (2), a different point of view must be considered because inserting the
infinite values of Q and R in the constitutive laws (2) result in an infinite stress. Biot (1955) has given as
condition for incompressible constituents

(1 = d)ey + ey =0, (11)
i.e., it is assumed that the dilatation of the bulk material vanishes. Realizing the relation

Q 1 — ¢ Q S

E:T:>E8kk+8£k:0 (12)

also in the partial stress formulation the case of incompressible constituents can be included resulting in
the constitutive assumptions

2
o}, = 2Gz}, + (K—§G>e,ik5,-j7 (13a)
o =—¢ R<985 +&f )EO (13b)
=—op= R ke T Gk T

To achieve the zero value in Eq. (13b), the condition that the value R becomes large but is limited must
be used.

Contrary to the incompressible model formulated for the total stress formulation (10), in the partial
stress formulation the assumption of incompressibility (11) results in an uncoupling of the solid and the
fluid in the constitutive assumptions. Therefore, the two incompressible models (10) and (13) are
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different whereas the underlying compressible models (3) and (2), respectively, are identical. This is not
really a contradiction. Keeping in mind that an incompressible model is always an approximation for the
more realistic compressible case, it is clear that different approximations can exist. However, the question
which approximation is better can only be answered by the respective application.

Aiming at the equation of motion to model wave propagation phenomena, it is sufficient to formulate a
linear kinematic equation. Hence, in the following, the relation of the solid/fluid strain to the solid/fluid
displacement is chosen linear, respectively:

S 1 N S
G =5 (“i,j + ujJ)’ B = Ui (14)

assuming small deformation gradients.
2.2. Governing equations: compressible model

In the preceding section, the constitutive equations and the kinematic relations have been given. The next
step is to state the balances of momentum. In any two-phase material there are three possibilities to for-
mulate the balances of momentum: first, the balance of momentum in the solid; second, the balance of
momentum in the fluid; and third, the balance of momentum for the bulk material. But, it is sufficient to
choose two of them.

The first to balances are used by Biot (1956a) using the solid displacement and the fluid displacement as
unknowns

2

5+ (=00 = (= it +p (i1 — i) + & (i — i), (150)
of + ! = dpiiit — p, (iis — i) f%z(uffaf). (15b)

The first balance equation (15a) is that for the solid skeleton and the second (15b) is that for the interstitial
fluid. In Eq. (15), the body forces in the solid skeleton /¢ and in the fluid /I are introduced. Further, the
respective densities are denoted by p, and p;. To describe the dynamic interaction between fluid and
skeleton an additional density the apparent mass density, p,, has been introduced by Biot (1956a). It can
be written as p, = C¢p;, where C is a factor depending on the geometry of the pores and the frequency
of excitation. At low frequency, Bonnet and Auriault (1985) measured C = 0.66 for a sphere assembly of
glass beads. In higher frequency ranges, a certain functional dependence of C on frequency has been
proposed based on conceptual porosity structures, e.g., in Biot (1956b) and Bonnet and Auriault (1985).
The factor ¢° /x in front of the damping term is usually denoted by b. Here, the simplification of a fre-
quency independent, respectively time independent, value is taken which is only valid in low frequency
range. Further, the above chosen factor ¢* /K is given only in case of circular pores when x denotes the
permeability. However, in the following, any other also frequency dependent factor 4 could easily be
implemented.

The third above mentioned balance of momentum for the mixture is formulated in Biot’s earlier work
(Biot, 1941) for quasi-statics and in Biot (1956a) for dynamics. This dynamic equilibrium is given by

0y + F = p(1 — @)iis + Ppyii, (16)

with the bulk body force per unit volume F; = (1 — ¢)f* + ¢f1. It is obvious that adding the two partial
balances (15a) and (15b) results in the balance of the mixture (16).

In most papers using the total stress formulation, now, the constitutive assumption for the fluid
transport in the interstitial space is given by Darcy’s law. Here, it is also used, however, with the balance of
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momentum in the fluid (15b) Darcy’s law is already given. Rearranging (15b) and taking the definition of

the flux ¢; = qﬁ(uf — itf.) as well as ¢ = —¢p into account the dynamic version of Darcy’s law
qi = —K<P,i JF% (“;f - ”f) + pyif _fif> (17)

is achieved.

Aiming at the equation of motion, the constitutive equations have to be combined with the corre-
sponding balances of momentum and the kinematic conditions. To do this, first, the degrees of freedom
must be determined. There are several possibilities (i) to use the solid displacement #{ and the fluid dis-
placement uf (six unknowns in 3-d) or (ii) a combination of the pore pressure p and the solid displacement
u; (four unknowns in 3-d). As shown in Bonnet (1987), it is sufficient to use the latter choice. Here, for
completeness, both choices will be presented where the first will be denoted by ui—u! formulation and the
latter by uj—p formulation.

First, the equations of motion for a poroelastic body are presented for the unknowns solid displacement
u$ and fluid displacement . Inserting in (15) the constitutive equations (2) written for the partial stress
tensors and the linear strain displacement relations (14) yield a set of equations of motion in time domain

S 1 Q S S
Gu;.yjj—i- (K—F—G)u;”+Q(§uj,ji+u§Ji> +(1—-9¢)f,

3
— (1= i+ (i~ i) + 2 (35— ). (18a)
R(%”jn + u§ﬂ> + ¢fzf = d)/’f’.flf — Pa (“;S - ”zf) - %2 (“zs - ”zf) (18b)

Second, the respective equations of motion are presented for the pore pressure p and the solid dis-
placement u as unknowns. To achieve this formulation the fluid displacement u! has to be eliminated from
Egs. (3), (4), (16) and (17). In order to do this, Darcy’s law (17) is rearranged to obtain u!-u}. Since this
relative displacement is given as second order time derivative in (17) and the flux is related to its first order
time derivative by ¢; = qb(itf—itf), this is only possible in Laplace domain. After transformation to Laplace

domain, the relative fluid to solid displacement is

u, —

2.2
s Kpe's 1 - 2 as Gf
P =— i+ STpsit; — f; ). 19
¢’ + 52%(p, + dpy) S*Ppr (b 4o =) (1)

B

In Eq. (19), the abbreviation f is defined for further usage and Z{f(s)} = f(s) denotes the Laplace
transform, with the complex variable s. Moreover, vanishing initial conditions for 5 and uf are assumed
here and in the following. Now, the final set of differential equations for the displacement i} and the pore
pressure p is obtained by inserting the constitutive equations (3) into the Laplace transformed dynamic
equilibrium (16) and continuity equation (4) with @~ from Eq. (19). This leads to the final set of dif-
ferential equations for the displacement #; and the pore pressure p

>

~s 1 ~s A ~s 7 5
Git + (K +36 )i, — = Bl = (0 — )i = 47 — Fi (200
B . ¢25A N - B o
T VHii T T 5 P a_ﬁsu?i:_a+_ ii* 2Ob
o P TR P (o — B)siz; 5o (20b)
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In the above Egs. (20), the bulk density p = p(1 — ¢) + ¢p; is used. This set of equations describe the
behavior of a poroelastic continuum completely as well as the uS-uf formulations (18). Contrary to the
formulations using the solid and fluid displacement (18) an analytical representation in time domain is only
possible for k — oco. This case would represent a negligible friction between solid and interstitial fluid.

2.3. Governing equations: incompressible model

As mentioned above, often the approximation of incompressible constituents can be used. Regarding the
assumption of only one incompressible constituent (7) and (8) no special governing equations must be given
because only the material data are changed and not the structure of the constitutive law. So, in the fol-
lowing, the expression ‘incompressible’ will denote the case when both constituents are modeled incom-
pressible.

In this case of modeling both constituents as incompressible, a different set of governing equations is
obtained. Inserting in (18) the incompressibility condition (12), the governing equations are given by

G, + (K +;G> (L= $)fF = (1= @)piis + p, (i — if) + %2 (i — i), (21a)
01! = dpiitt — p, (it — i) —%2('? —if) (21b)

using the solid displacement and fluid displacement as unknowns. In this incompressible version of the
equations of motion, the uncoupling of the fluid and solid in the constitutive assumptions is clearly ob-
served as commented in the last section. So, in Egs. (21) only the coupling by the acceleration and damping
terms remains. Further, the second Eq. (21b) is no longer independent. It cannot be used to eliminate the
fluid displacement ! in (21a). As an additional equation the incompressibility condition (11) has to be used.

Contrary, if the solid displacement and the pore pressure are used as unknowns a sufficient set of dif-
ferential equations is obtained. Inserting in (20) simply the conditions (9), i.e., setting o« = 1 and taking the
limit R — oo, the equations of motion under the assumption of incompressible constituents are achieved
resulting in

1 . ~
Git + (K +3G), — (1= Bips = 2o — Bt = B F. (222)
L - psi, = —ar L, (220)
Pt SPr

The equation for the pore pressure (22b) shows that this variable is no longer a degree of freedom. Inte-
grating of (22b) would yield the gradient of the pore pressure which could then be eliminated in (22a).
Physically interpreted the pore pressure is in this case only determined by the deformation of the solid
skeleton and no longer by any deformation of the fluid.

3. Fundamental solutions

Fundamental solutions for the above given systems of differential equations are known in closed form
only in Fourier domain or Laplace domain. But, even in the transformed domain only the general case of
compressible constituents is published. The fundamental solutions for the Laplace transformed system of
(18) is given in Manolis and Beskos (1989) and for the Laplace transformed system of (20) in Chen
(1994a,b).
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Here, the fundamental solutions for the incompressible case are presented. The fundamental solutions
for the compressible case are recalled to show how the physical approximation of incompressibility is
represented in the mathematical formulas. In order to deduce these solutions, an operator notation is
useful. So, for the u;—p formulation the governing equations of the compressible case (20) as well as the
incompressible case (22) are reformulated as
i

1

B4
a

S (23)

with the differential operators

(GV? —s*(p — Ppr)) oy + (K +%G)aiaj —(o — B)o; }
B4 = B s |, (24a)
—s(o = B)9; avz R
, (GV2 —5*(p — Bpr))dy + (K +%G)aiaj (1= p)o;
Ba = 51— B0, Lo (245)
f

In Egs. (23) and (24), the operator is denoted by B4 independently whether it is in 2-d (i,j = 1,2, i.e., three
unknowns) or 3-d (i, = 1,2, 3, i.e., four unknowns). The corresponding representation of a poroelastic
continuum using the u{—u! formulation is

i 1—$)fs

B | it | + ( ﬁ)ﬁ] —0 (25)

with the differential operators
: ¢
Bi™ 00,0, + <S2pa +s ?> d;j
B6™ = I 5 (26a)
00,0, + (Szpa + 57) dj RO0; — (S2(¢Pf +Pa) — S;) dij
with
comp 2 2 ¢2 1 Q2
B = |GV —S((1_¢)P5+Pa)—s7 0y + K+§G+F 0,0;,
2
. Bg}comp (Szpa +5 2 > 5[,/,
B6"omP — ) K (26b)

2
(szpa + sﬂ)% < — 5 (dpp + pa) — S(ﬂ)%
K K
with

incom 4)2 1
Bij L (GVZ—SZ((1—¢)pS+pa)—SK 5U+ K+§G 6,@1
As before in (24), the operator name B6 is the same whether it is in 2-d (four unknowns) or 3-d (six
unknowns). In the following, the same material parameters in both representations (24) and (26) will be
used, so Q is replaced by O = R(«/¢ — 1) to have comparable representations.
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In Egs. (24) and (26), the partial derivative (), is denoted by 0; and V?2 = 9 is the Laplacian operator.
Note, all the operators (24) and (26) are elliptic but the operators B6 in (26) are self adjoint whereas the
operators B4 in (24) are not self adjoint. Therefore, in the latter case for the deduction of fundamental
solutions the adjoint operator to B4 has to be used which in the following will not be indicated separately.

A fundamental solution is mathematically spoken a solution of the equation BG 4 Idé(x — y) = 0, where
the matrix of fundamental solutions is denoted by G, the identity matrix by I, and the Dirac distribution by
0(x —y). Physically interpreted the solution at point x due to a single point force at point y is looked for.
Concerning the interpretation of the ‘single point force’ the difference in the fundamental solutions for both
representations of poroelastic governing equations (23) and (25) becomes obvious. In the system (25), the
right hand side consists of forces acting in the solid part (1 — d))j;'s and in the fluid part ¢ j’f of the porous
media, respectively. Contrary, in the system (23), the right hand side consists of a bulk body force
F;= (1 — ¢)f* and a source term &, i.e., no forces in the fluid /1 are present. Due to this, it cannot be
expected that the fundamental solutions of both systems coincide. Only the displacement solution due to a
single force in the solid will be the same.

To find these solutions, the same method can be chosen for both representations. In all cases, for
compressible as well as incompressible constituents and for both representations, respectively, the method
of Hormander (1963) is used. The idea of this method is to reduce the highly complicated operators (24)
and (26) to simple well-known operators. For this purpose the definition of the inverse matrix operator
B! = B®/det(B) with the matrix of cofactors B is used. The ansatz G = B¢ for the matrix of fun-
damental solutions with an unknown scalar function ¢ inserted in the operator equation
BG + I6(x — y) = 0 yields a more convenient representation of Eqs. (23) and (25)

BB ¢ +Id(x —y) = det(B)Ip + I6(x —y) = 0 ~» det(B)p +d(x —y) = 0. (27)

With this reformulation, the search for a fundamental solution is reduced to solve the simpler scalar
equation (27). An overview of this method is found in the original work (Hormander, 1963) and more
exemplary in Schanz (2001) and Rashed (2002).

First, this method is applied to the compressible operators in (24).

Compressible model. Following Hormander’s idea, first, the determinants of the operators B4°™ and
B6™ are calculated, preferably, with the aid of computer algebra. This yields the results:

2-d:
com Gﬁ 2192 2 292 2 212
der(Ba) = (K 1 36) (V2 = 92) (V2 = £) (V2 2. (28)
f
—2Gh?
det(B6%™) = %‘f’pf (K + %‘ G)R(V2 — S B) (V= 527) (V2 = 5°43), (29)
3-d:
2
det(B4™) = fpﬁ (K + ;‘ G) (V2= £22)2 (V2 = 222) (V2 = 222), (30)
f
26420\ 2
det(B6*™) = (SGZ,’ pf) <K +§G)R(V2 — SR (V2= $2) (VP - $22), (31)

with the roots 4;,,i=1, 2, 3
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12 :l ¢2Pf+P—BPf+Pf(°‘_ﬁ)2
2| BROK+3G B(K+30)

2
¢’pr _p—PBpr | pr(z—p) ¢*pe(p — Bpr)
+ + 3 i —d— |, (32a)
PR K+3G B(K+1G) BR(K +4G)
2P ber, 32b
3 G ( )
Expressing the determinant using these roots the scalar equation corresponding to (27) is given by
(V2 =5203) (V2 = 5°2) (VP =S Z5) Y + 6(x —y) =0 (33)
using an appropriate abbreviation iy for every operator, i.e.,
2-d:
B4« 1y = Gﬁ (K—i—iG)gD,
SP¢ 3
com S2¢2pf 4
B6“™ : y = -G K+=G |Rop.
S (34)
3-d:
comp _ 2£ i 2 292
B4 =G K+=G| (V" =5773)0,
Spf 3
242 2
B6“™ 1 = GZ(S—‘Z“> (K +gG)R(V2 ~5*22)0.
The solution of the modified higher order Helmholtz equation (33) is
1 Ko(Aysr Ko(Aosr Ko(Assr
2-d: Y= 4 2 ?2(12) 2 2 02(22) 2 2 ?2(32) 2\ | (35)
st | (= A) (4 =2)  (B=4)h—4) (H-4)(45-4%4)
1 efilsr efizsr efip'r
3-d: = + + , 36
T [(ﬁ ) I i P [ zi)] o

with the zero order modified Bessel function of second kind Ky(z). Further, the distance between the two
points x and y is denoted by r = |x —y|.

Having in mind that the Laplace transformation of the function describing a traveling wave front with
constant speed cis e "/ = Z{H(t — r/c)} (in 3-d), it is obvious that the above solution (36) represents three
waves. However, as the roots 4; are functions of s, here, the wave speeds are time dependent representing the
attenuation in a poroelastic continuum. This is in accordance with the well known three wave types of a
poroelastic continuum (Biot, 1956a). The roots 4, 4, and 43 correspond to the wave velocities of the slow
and fast compressional wave and to the shear wave, respectively. The same is true in 2-d where the damped
wave fronts are represented in Laplace domain by the modified Bessel functions Kj(z). It should be remarked
that the root /; representing the shear wave is in 3-d a double root whereas it is in 2-d only a single root,
which, as in elasticity, corresponds to the number of polarization planes (Royer and Dieulesaint, 2000).
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From a pure mathematical point of view, the determinant of the operator B6°°™ can have four roots in
2-d and six roots in 3-d. However, in (29) or (31) only three or four roots are found, respectively. As above
discussed, each root represents a different wave type whereas the shear wave corresponds to a double root in
3-d. Therefore, from a physical point of view B6°°™ can be expected to have the same roots as B4°°™P,
despite the larger matrix dimension. This is confirmed in (29) and (31). As a consequence, it can be con-
cluded that the representation of a poroelastic continuum with solid displacement and fluid displacement is
overdetermined, i.e., the representation with pore pressure and solid displacement is sufficient. This con-
firms the considerations of Bonnet (1987).

The next steps are to insert the solution ¥ back in the definition G = B*°¢ taking into account the proper
relations (34) between ¢ and . After calculating the respective matrix of cofactors B the fundamental
solutions are found for the u!—p formulation
Us U

ij i

Ds Df
Pj P

G4comp —

GB(K +1G) —A(x = f)o; A((K +1G)V? +4) v, (37)

with the abbreviations
A=GV’ =5 (p—Pp;), D=B/(spy)V’ —¢’s/R, F=(K+1/3G)D— (a—p)’s,

and for the u$—uf formulation

G6comp _ Ljii{s 3];{
uy Ul
—B M30;; + (Ms — M3V?)d; M0y + (My — MV?)5,;
B G2’ pr (K +4G) | MOy + (Ma — M\V?)Sy;  Mady; + (Ms — My V)6, v, (38)

with the abbreviations

S () () rer (ko) oo (5
+(—=—1 -C|-=-1)+CV|K+=-G)+B|IC—E[{—--1])],

R ¢ ¢ 3 ¢

M2—2BC<%— 1) —BZ—BV2<K+1G> _c?

M, =CE

K+1G ?
M; = EVZ(KJr;G) +2EC(;— 1> _eop|ntsly (;— 1) 1
s2pe’G N o c
M4:T(V2—S223) v2<$—1> +E]’
2 2 r E
Ms :Lfﬁ‘b G(s%g -V v%ﬂ,




M. Schanz, D. Pryl | International Journal of Solids and Structures 41 (2004) 40474073 4059

2
B:sz_sz(l_d))ps_cﬁ C:S%+S2paa E:_Szd)pf_

The difference of the 2-d solution and the 3-d solution lies only in the different functions  from (35) or (36),
respectively. The explicit expressions of all the above given fundamental solutions can be found in
Appendix A. Comparing the explicit expressions for lA];, and lA];,S in Appendix A it is obvious that both
fundamental solutions are identical.

Incompressible model. In Section 2, the governing equations for the u}—p formulation were obtained by
applying a limit to R and setting o = 1. Unfortunately, this limit can be applied to the fundamental
solutions of the compressible case only in 3-d. In 2-d, this limit is not finite. So, these solutions must be
calculated independently where the procedure is the same as before. First, the determinants with their
respective roots are calculated. However, here, both formulations, the uS—p formulation and the u$—uf
formulation, have different roots indicating that two different incompressible models are considered as
discussed in Section 2.

First, the uj—p formulation is discussed. In this representation, the determinants are

2-d det( 41ncomp) E;pﬁ (K 4 3 G) (VZ _ Szjé) (v2 _ SZX%)VZ, (39)
f
2 4
3-d: det(B4"eomP) = fpﬁ (K +3 G) (V2 = 222)° (V2 = 222) V2, (40)
f

with the roots

pini-d)

PR Uy S Yt /73 (41)
K+1G

5 G
This yields an operator equation similar to (33),
(V2 =5"23) (V=" A) VY +6(x —y) =0, (42)

using the appropriate abbreviation for iy corresponding to (34). Due to the Laplacian operator in (42) this is
no longer an iterated modified Helmholtz equation but can be solved in a similar way by splitting the
operator in Helmholtz and Laplace equations. The solution is

2d: p= 1 l(Ko(/llsr) In() | Ko(dssr) ] @3)

Coomst | (202 A (R-aDA
1 e—A]sr 1 e—)35:
3-d: = =+t |- 44
V= drst [ (A7 =) (45 = 2%) " s " 305 =47 ] 4

As remarked at the beginning of this subsection, in 3-d, the incompressible solutions (44) are the limit
values of the compressible results (36) for 1, — 0. Contrary, in 2-d, the compressible solutions (35) tend to
infinity for 4, — 0, i.e., to calculate the solution (43), Eq. (42) has to be solved.

For the u}-u! formulation the determinants are found to be

2-d: det(B6™°™P) = 4Gﬁ¢ i <K+§G>( —$23) (V2 = $*43), (45)
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672 46 3
: - 4
3d: det(B6™™) — %“ (K i G) (V2 — 22) (V2 - £22), (46)
with the roots
;L%_P—ﬁpf /Aé:p_ﬁpf' (47)

K436’ G

These determinants yield a modified iterated Helmholtz operator as governing equation similar to (33),
(V2= s3) (V2 = "2 + 3(x —y) = 0, (48)

using the proper abbreviation

) 4 14 2 4
2-d: B6‘“°°mp:np:Gs¢pf<K+—G>go,

2 3
b 6 (49)
incom| 256¢) pl} 4 2 212
3-d: B6"“"™ : y = -G 7 K—i-gG (V* —5°23) 0.
The solution of the modified Helmholtz equation (48) is
1 1 , ,
2-d : lp = ﬁ ﬂ [K()(/L,3SI”) — Ko(Alsr)], (50)
1 1 . )
3-d: [e_“" — e_”“"]. (51)

dmrs? )3 — 3

These solutions essentially differ from the corresponding ones in the u;—p formulation (43) and (44). The
terms In(r)/(/1373) or 1/(213) produced by the limit /, — 0 in (43) and (44) are no longer present. So,
obviously this simplified incompressible model will produce different results compared to the incom-
pressible u;—p formulation.

Concerning the waves represented in both models the following observations are made. In both for-
mulations, the third root A; corresponding to the shear wave velocity is not changed because incom-
pressibility can only affect volumetric changes. Contrary, the compressional waves have to change as
observed by the vanishing root 1, and the different root 4;. Here, also the difference between both for-
mulations is obvious. In the u—p formulation the smaller value 4,, corresponding to the faster compression
wave, goes to zero. The larger value A, corresponding to the slower compressional wave, survives.
Reflecting the physics behind these two compressional waves this behavior is explainable. In case of the fast
compressional wave, the solid and the fluid move in phase. If the solid material is assumed to be incom-
pressible it has no longer any volumetric deformation and, subsequently, the wave speed tends to infinity
respective the corresponding /, to zero. In case of the slow compressional wave, the solid and fluid move in
opposite phase. This relative movement is still possible if the solid material is incompressible.

These physical considerations are well represented in the u$—p formulation. Contrary, in the u—uf for-
mulation, no root /A, exists, i.e., the determinants (45) or (46) are only of second or third order in V? in 2-d
or 3-d, respectively. This reflects the fact that this incompressible model is not achieved by a limit as in the
ui—p formulation. Only from physics it can be concluded that the fast compressional wave vanishes,
however, the surviving wave has a different wave velocity compared to the other formulation.

Finally, the incompressible fundamental solutions are found for the uj—p formulation:

G4ineomp _ SPg (F*N* + AD*);; — F*0; —A(1 — p)s0;

GB(K +1G) —A(1 = )0, A((K +16)v2 4.4 |V (52)
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with the function y taken from (43) in the 2-d case or from (44) in the 3-d case. Different from the com-
pressible case, here, the constants are D* = f/(sp;)V* and F* = (K + 1/3G)D* — (1 — B)’s. For the ui—u'
formulation the matrix of fundamental solutions is

77ss st
Uif Ulf/'

G6incomp — b b
fs ff
Ut Ul

— B (K +50) (MoE + E*V?)d,; — E*0;  —C(My + EV?)d;; + CEQ; W (53)
Gs4q§4p% (K + %‘ G) —C(My + EV?)d;; + CEQ;;  B(My + V?E)d;; — C*0;
with the abbreviations B, C and E from the compressible case and
2 2
My= PG (02 ),
B(K+5G) "

In Eq. (53), the function iy has to be taken from (50) in the 2-d case or from (51) in the 3-d case. The final
result can be summarized in the following form:

[ -8

incomp __ (rb 77ss
G =No—p w-p| Y

¢ ¢’
The explicit expression of lAJl.js is given in Appendix A. The solution (54) makes it obvious that the
underlying model for incompressibility is not sufficient because this result can be interpreted as totally
dominant solid displacements, i.e., the fluid influences only the material data of the bulk material but not
the behavior. This seems to be a very crude approximation of the realistic behavior, especially under the
aspect of wave propagation.

In general, all the above derived incompressible solutions show that the assumption of incompressible
constituents yields an infinite wave speed of the fast compressional wave. Contrary, if only one constituent
is assumed to be incompressible all wave types still have finite wave speeds. It was also shown that in the
incompressible model of the u$-u! formulation one compressional wave disappears. This makes in the
authors’ opinion no sense. However, the other model for incompressibility used in the u;—p formulation,
i.e.,, R — oo and o = 1, which cannot be introduced to the constitutive equations of the partial stress
formulation, as discussed in Section 2, can be inserted into the final compressible fundamental solutions
(A.5) and (A.6) of the uS—uf formulation. Due to the different model assumptions such incompressible
fundamental solutions for the u{—u' formulation are different from (54).

(54)

4. Singular behavior

The singular behavior of the above given fundamental solutions can be found by a series expansion with
respect to the variable ». This variable is found in these solutions either in the exponential function in the 3-
d solutions or in the Bessel functions in case of 2-d. Else, only powers of » appear. So, it is sufficient to insert
in the fundamental solutions (A.1)—(A.6) the following series expansions:

[e¢] _)\, ¢
e =3 % =1 — Jgsr + 235°7 + O(r) 33)
=0 :

for the exponential function, and
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Ko(Jusr) = —(In(Jgsr) —In2 +y) + 0(), (56a)
Kilsr) = —— + 5 (ln(esr) = n2 49— 2 ) + 00
1\ ApST) = )Lksr 5 kST Y > r),

(56b)

n—oo )Y
v=1

"~ 1
y = lim (Z ——1In n) = 0.577216 (Euler-constant)

for the Bessel functions. Inserting these series in the fundamental solutions and a subsequent ordering with
respect to the power of r yields the singular behavior.

4.1. ul-p formulation

For the uj—p formulation the compressible as well as the incompressible solution behaves equal. In 3-d, it
is found

P, U = 0(), (57a)
Us = ! {rir; + (3 —4v)o }lw( 0) (57b)
i TenG(1 —v) VY yr o,

elastostatic fundamental solution

B prs 1 0
Pr="_10 57
gy 0, (57¢)

and in 2-d a similar result is achieved

P Ul = 0("), (58a)
o~ 1 |
Uij = 8nG(1 —v) {riry— (3 =4v)d;Inr} +0(:"), (58b)

elastostatic fundamental solution

> —PrS 0

P = Inr+ OF). 58¢
2 (") (58¢)

So, the singular behavior is the same as in elastostatics or acoustics, i.e., the poroelastic fundamental

solutions are only weakly singular or even regular. Again, note that there is no different behavior between

the compressible or incompressible model.

4.2. uf—ulf Sformulation

For the u3-u! formulation, the singular behavior is different from the above discussed formulation. This
is not surprising because looking at the differential operator B6 (26) it is observed that this operator has in
the lower part of the main diagonal no Laplacian operator contrary to the operator B4 (24). This is also
represented in the fact that the three members lA]lSS, (Ajl.j.f, and lA]g of G6 are composed by the fundamental
solution U} and some additional term. In detail, the following singularities are found for the 3-d case:
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~ 1 1
sS— —4)5, = +0(°
U; T62G(T ) {rir; + (3 —4v)5;} p +0(r"), (59a)

elastostatic fundamental solution

77s 7rfs 1 d) — ﬂ %= ﬁ 1 )
Uy =Up = T62G () { " (rir;+ (3 —4v)8;) + p (rirj— 8;)(1 — 2v)};+ o),  (59b)
O = ey - 054 00 (59¢)
Vo 4n*s?p; T TS
and for the 2-d case
77ss 1 . . 0
Uy = SG(1 =) {rir;— (3 —4v)o,;Inr} +0(+"), (60a)

elastostatic fundamental solution

7rsf _ 7yfs
U = U

= 8,TG(11 . { ’ ; / (riry = (3= 4v)d,lnr) +2 ; p (rir;+ dyInr) (1 — 2v)} +0(°),  (60b)
Ut :L{zr.r,_54,}l+@(lnr) (600)
Vo amgtstpe U TR :

In Egs. (59¢) and (60c), it becomes obvious that these solutions are hyper-singular, whereas all other
solutions are weakly singular. Also, in (59b) and (60b) the elastostatic singularity of (59a) and (60a),
respectively is identified with some additional poroelastic terms.

In case of the incompressible model, clearly, due to the connected form of (54) all four fundamental
solutions have the same order of singularity namely that of (A];.S. The limit of this solution (A.7) or (A.8)
yields as in the compressible case the elastostatic fundamental solution. However, no hyper-singular
behavior exists for the incompressible solutions.

5. Visualization of some fundamental solutions

Finally, some exemplary fundamental solutions are calculated to visualize the principal behavior and the
difference between the compressible and incompressible model. Despite the differences in both incom-
pressible models, i.e., in the u}—p formulation and in the u{—u' formulation, the principal effects which can be
visualized are similar. Therefore, next, only the visualization for the uj—p formulation and for this for-
mulation only the displacement due to a point force lAJl.j. and the pressure due to a source P’ in 3-d are
presented.

Exemplary for a material which can be modeled incompressible as well as compressible a soil is chosen.
The material data (see Table 1) are taken from literature (Kim and Kingsbury, 1979). The incompressibility
condition (5) yields for this material:

K K

— =10.019, — =0.0636. (61)
K Kf

So, it can be expected that the fundamental solutions of the compressible and incompressible model show a
similar behavior.
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Table 1
Material data of a soil (coarse sand)
K(N/m*)  G(N/m*)  p(kg/m’) ¢ K* (N/m?) pr (kg/m’) K" (N/m’)  x (m*/Ns)
Soil 2.1x108 9.8x107 1884 0.48 1.1x10%° 1000 3.3x10° 3.55x107°

abs (U3) r8e-10

’ » /, l
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Fig. 1. Displacement fundamental solution abs(lAf fl) versus frequency, o and distance, r.

First, in Fig. 1, the displacement fundamental solution abs(lA] 151) is depicted versus the distance » and the
frequency w. To introduce in the fundamental solutions from Appendix A the frequency instead of the
complex Laplace variable s, simply the real part of s is set to zero, i.e., s = iw. Further, the absolute value of
the complex valued displacement solution, i.e., the amplitude, is given in Fig. 1 and the range of values is
restricted at the singularity. The singular behavior for small values of r is nearly independent of the fre-
quency. Away from the origin the solution shows a wave like form with smaller amplitudes for higher
frequencies.

In the following, to have a better insight into the behavior of the fundamental solutions, the distance r is
kept constant and the frequency is varied. Further, all results, i.e., the displacement and pressure results are
normalized to their singular behavior (57b) and (57c), respectively. Additionally to the frequency results
also the time-dependent fundamental solutions are calculated by an inverse Laplace transform. However,
not the impulse response functions are presented but the response due to a Heaviside (unit step function)
time history of the load. This is achieved by the convolution between the fundamental solution and the
Heaviside function. Both operations, the inverse transform and the convolution, are performed within one
calculation using the Convolution Quadrature Method proposed by Lubich (1988).
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In Fig. 2, the normalized displacement fundamental solution abs((A]ﬁ) is plotted versus frequency for
the compressible and the incompressible model. This study is given for’two points at » = 0.1 m and at
r = 0.5 m distance from the origin. For moderate frequencies and small » both solutions, compressible and
incompressible, are very similar whereas for higher frequencies differences are observed. This is in accor-
dance with the model. The fast compressional wave which speed tends to infinity influences only the short
time behavior, i.e., the higher frequencies. Hence, if this wave vanishes only the high frequency range of the

1.0—-~---_
o
g
S 08
= - ——— compressible
=
n - . .
Y D \\ N incompressible
W
8 06—
%
K 04+
2
ko)
0.2
| | | | | |
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(@)r=01im frequency [HZz]
1.0
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n g \
1 R incompressible
% 0.6
=
@
& 04
e
2
© 0.2
00 | | | | | T
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Fig. 2. Displacement fundamental solution abs ﬁf1> normalized with Uy, (57b) versus frequency w: Comparison compressible and
incompressible model at different distances r.
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Fig. 3. Displacement unit step response function U;, versus time # Comparison of the compressible and incompressible model at a
distance = 0.5 m.

solution is affected. The singular behavior, i.e., the limit w — 0, is identical for the compressible and
incompressible solution. However, for small but nonzero frequencies the solutions differ for the two models,
which is well visible for » = 0.1 m. This difference may be explained with the change in the speed of the slow
compressional wave.

Except of the last effect all these differences of the compressible and the incompressible model are also
visible in time domain. Therefore, in Fig. 3 the time dependent displacement response due to a Heaviside
load in time is depicted versus time at a distance » = 0.5 m. There are, as expected, not too much differences
visible in the long time behavior. The two jumps in the graph at # = 0.0004 s and at = 0.0031 s correspond
to the fast compressional wave and to the shear wave, respectively. In the zoom, it becomes visible that in
the incompressible model (dashed line) the compressional wave speed tends to infinity, i.e., the arrival time
tends to zero. Else, this time dependent plot of the fundamental solution shows that for this material the
incompressible model can be chosen if not the early time response is under consideration. However, it must
be remarked that for other material data, especially if they violate the incompressibility condition (5), both
models show large differences over the complete observation period.

Next, in Fig. 4, the normalized pressure due to a source in the fluid is considered. For this solution the
largest differences are expected because the pore pressure is no longer a free variable in the incom-
pressible model. Further, in an incompressible fluid a change in pressure is immediate at every point r,
hence the pressure cannot show a strong time, respectively frequency, dependence. These effects are
observed in Fig. 4, where both results differ by several decades in the absolute values. The compressible
pressure is much smaller than the solution in the incompressible model and shows a more pronounced
frequency dependence. However, for very small frequency, i.e., for the long time behavior, both solutions
tend to the same value. It should be remarked that in Fig. 4 a logarithmic scale for the pressure is used
which on the one hand enables this representation at all but on the other hand distorts the frequency
dependence.

In the time domain these considerations are confirmed. In Fig. 5, the pressure due to a Heaviside time
history of the load is depicted versus time at a distance » = 0.5 m. Note, in Fig. 5 a different time scale
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(57¢) versus frequency, w. Comparison: compressible and

compared to Fig. 3 is used. The pressure is mostly zero with the exception of the arrival time of the
compressional wave at ¢ = 0.0004 s. There, in the compressible solution an impulse is visible. The same
impulse is also visible in the incompressible solution, however, at = 0 s. Further, the characteristics of this
shock wave is different for both models. In the more stiff incompressible model a more pronounced and
larger impulse has been calculated compared to the compressible model. Naturally, the amplitude and
sharpness of such a shock wave is dependent on the time discretization used and other parameters of the
inverse transformation. However, in the comparison above for both the same parameters have been ap-

plied, so the results are comparable.
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Fig. 5. Pressure unit step response function P' versus time ¢#: Comparison of the compressible and incompressible model at a distance
r=0.5m.

6. Conclusions

Based on Biot’s theory, in the present work, fundamental solutions for the special case of incompressible
constituents are deduced and compared to the fundamental solutions of the compressible case. This has
been done not only for the representation with the solid displacement and the pore pressure as unknowns,
but also for the solid displacement and fluid displacement formulation. For both representations different
models for incompressible constituents are given. The fundamental solutions are determined using the
method of Hormander.

The derivation of the fundamental solutions has confirmed the known fact that the solid displacement
and the pore pressure are sufficient to describe the behavior of a poroelastic continuum. Further, it has been
shown that the incompressible model of the solid and fluid displacement formulation is not suitable to
describe the dynamic behavior of a poroelastic medium. In general, an incompressible model assumes an
infinite wave speed of the fast compressional wave, i.e., this wave form is neglected. Hence, the question
arise whether such an approximation makes sense in a wave propagation calculation. The presented fun-
damental solutions show differences for higher frequencies, i.e., short times, in comparison to the com-
pressible model. Therefore, it can be concluded that an incompressible model can only be used in wave
propagation problems if not the short time behavior is considered and also if the ratios of the compression
moduli are very small.

Appendix A. Explicit expressions for the fundamental solutions

The explicit expressions of the poroelastodynamic fundamental solutions for the unknowns solid dis-
placement, u, and pore pressure, p, and for solid displacement and fluid displacement, u{ and uf, are
given in the following for a 2-d and a 3-d continuum, for compressible as well as incompressible consti-
tuents.
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A.1. Solid displacement, ui and pore pressure, p
A.1.1. Compressible model

3-d. The elements of the matrix G4°°™ (37) are the displacements caused by a Dirac force in the solid

2 2 2 2
Ay — 2 Ay — A ,
‘4 Y2 L —Asr 4 ‘1 —losr 122 — 381
|2 — Ry —e PV 4 (8,438 — R3)e
Py 2

. 1

Us =
v dnr(p — fpr)s?

with Ry = (3.7, — 8;)/1% + Jus(3rr; — 8y) [r + Jis*rir,; and 25 = (p — Bp;)/(K +4/3G). The pressure
caused by the same load is

P (a—ﬁ)pfr/ |:< 1> o ( 1) E ‘:|
P} = ; Jas+— e — as - e A.lb
P amps(K + 26y — 2y [\ 2T (A.1b)

For a Dirac source in the fluid the respective displacement solution is

(A.1a)

Ul = sP (A.lc)
and the pressure

Pr— SPr ()2 p2)ehsr _ ()2 )2 e A.ld
4Tcrﬁ()»f _;é) [( 1 4)e ( 2 4)e ] ( )

In the above given solutions, the roots 4, i = 1,2,3 from (32) are used.
2-d. In 2-d, the expressions for displacements induced by a force in the solid are

U; 1 BB g AT A g ok (Z3s7) (A2a)
i - - iiS 387 2a
U ams(p— Ppg) |20 22t R T R

and the pressure for the same load is

f)g _ pf(OC — ﬁ)r,i K, (ilsr))” — K (/lzsr)iz

(A.2b)

The roots 4;, i = 1,2, 3 are the same as in the 3-d case (32). The displacement fundamental solution for a
source in the fluid is

Ul =sP; (A.2¢)

1

and the pressure solution is

Bt _ SPr (47 = 23)Ko(Ausr) — (23 — 23)Ko(2asr)

- o e . (A.2d)

The abbreviation

2 — S
R = iy = % ASKy (Qusr) + 11 57 23 Ko (Jesr)

7

is used in Egs. (A.2). Further, K, and K; denote the modified Bessel functions of second kind.
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A.1.2. Incompressible model

3-d. For the case of incompressible constituents, the displacements caused by a Dirac force in the solid
are

U= R en R AT (5,00 R (A.3a)
P dm (oot | 2 kR -

with same abbreviations (R;, R,, A4) as in the compressible case and 4, 3 from (41). The pressure caused by
the same load is

1/55 _ (Oc_ﬂ)pfr,j . |:(/11S+l>e—ilsrl:|' (ASb)
T AnB(K +4G)rsA r r

For a Dirac source in the fluid the respective displacement solution is
Uf = 5P (A.3c)

and the pressure solution

P = 4;};“12 (2 = 2)e ™+ 22). (A.3d)
1

2-d. The above presented 3-d solution for the incompressible model can be simply achieved by the limit
Ay — 0, contrary to the 2-d solutions as shown in Section 3. Computing them following the formulas in
Section 3 yields for the displacement fundamental solutions

12 2 2
as _ 1 g 2d A,4 — )v] 27‘7[711' — 5’/
U 2ns(p— Ppy) | A2 Yo r

with the roots 4; and /; from Eq. (41) and the other abbreviations from the compressible solution. Eq.
(A.4a) is the result due to a single force in the solid. The respective pressure solution for such a load is

P ripr (1= B)(AisrKy (Aysr) — 1) '

— R¥ 4 5,5° 13K (as7) (A.4a)

1 Tamsp T r(K+40) (A.40)
The result due to a source in the fluid is given by
Ul =sP; (A.4c)
and the pressure by
Br_ spr (A — ) Ko(hsr) — 24 In(r). (A.4d)

- 2np 2

A.2. Solid displacement, u and fluid displacement, uf
A.2.1. Compressible model

3-d. The explicit expressions of the poroelastodynamic fundamental solutions are given in the following.
The four elements of the matrix G6°°™ (38) are the displacements caused by a Dirac force in the solid
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~
S8

1 A — % e
2 —/1 1
187 R2

;o= e 4 (8,025° — Ry)e A.5a
U Anr(p — Bpp)s? 1/1% /12 M i% ( ij/3 3) ( )

with the roots 4, i = 1,2,3 from (32), /; = (p — fp;)/(K +4/3G), and the R, from the u’—p formulation.
Comparing the above fundamental solution (A.5a) with the corresponding solution in the u;—p formulation
(A.1a) it is seen that they are identical. The relative fluid displacements caused by the same load and the
solid displacements caused by a force in the fluid are

~ —p~ 1 %—p
Usf Ufs ¢ ﬁ Us —
i o U 4w (K+4G) ¢(J) - 43)

{Rleiilsr — Rzeiazsr}. (ASb)

For a Dirac force in the fluid the respective fluid displacement solution is

~r_ (d—B) 1 B e [ 52 4
Ug 7 U + K +20) P2 = ) {Rle ()q <K +§G> —(p — Boy)

oo p ) e (B(k56) - - p 20— ) L s

2-d. The 2-d fundamental solutions for the u{—u' formulation have a similar structure as the above given
3-d solutions. The four elements of the matrix G6°°™ (38) are the displacements caused by a Dirac force in
the solid

7yss 1 j’i_}g 2d }2 )L%
U (p—Pep) | 2220 227

with the roots 4;, i = 1,2,3 from (32), /; = (p — Bp;)/(K +4/3G), and the R from the u{—p formulation.
As before in the 3-d case, the fundamental solution (A.6a) is identical to the corresponding one (A.2a) of
the uj—p formulation. The relative fluid displacements caused by the same load are identical to the solid
displacements caused by a force in the fluid

R¥ — R + 5ijs21§1<0(z3sr)] : (A.6a)

— B~ 1 a—p
USf Uts _¢-F Us — R — R¥Y. A.6b
¢ U 2m?(K+4G) qs(z%—zg){ CoR (4.65)

For a Dirac force in the fluid the respective relative fluid displacement solution is
~ —B)* ~ B 1 4
U = (& —F Us + RULB(K+5G) —(p—Bpp)
/ o> 7 22 (K+EG)dpr (A —43) 3

ao-n ) e (B(xe36) om0 -p L)) ase

A.2.2. Incompressible model

In this case the matrix of fundamental solutions is given in (54), but the explicit expression of the dis-
placement fundamental solution due to a single force in the solid must be given. It is in 3-d:

= 1 — A sr ) — 381
0 = g R+ (3730~ R)e ] a7
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and in 2-d:

N 1
US=— — [R¥ — R¥ 1 5,5 22K, () A8
Y ZTcsz(P—ﬁPf)[ 1 ARG ol 3sr)] ( )

with the roots /;, i = 1,3 from (47) and the R, and R} from the u}—p formulation.
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